White-light spectral interferometric technique to measure a nonlinear phase function of a thin-film structure

نویسنده

  • P. Hlubina
چکیده

We present a new two-step white-light spectral interferometric technique to measure a nonlinear phase function of a thin-film structure. The technique is based on recording of channeled spectra at the output of a Michelson interferometer and their processing by using a windowed Fourier transform to retrieve the phase functions. First, the phase function including the effect of a thin-film structure is retrieved. Second, the structure is replaced by a reference sample of known phase change on reflection and the corresponding phase function is retrieved. From the two functions, the nonlinear phase function of the thin-film structure is obtained. The feasibility of this simple method is confirmed in processing the experimental data for a SiO2 thin film on a Si wafer of known optical constants. Four samples of the thin film are used and their thicknesses are determined. The thicknesses obtained are compared with those resulting from reflectometric measurements, and good agreement is confirmed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film.

We present a white-light spectral interferometric technique for measuring the absolute spectral optical path difference (OPD) between the beams in a slightly dispersive Michelson interferometer with a thin-film structure as a mirror. We record two spectral interferograms to obtain the spectral interference signal and retrieve from it the spectral phase, which includes the effect of a cube beam ...

متن کامل

Spectral interferometric technique to measure the relative phase change on reflection from a thin-film structure

A two-step white-light spectral interferometric technique to measure the relative phase change on reflection from a thin-film structure is presented. The technique is based on recording of the channelled spectra at the output of a Michelson interferometer and their processing by using a windowed Fourier transform to retrieve the phase functions. In the first step, the phase difference between t...

متن کامل

Spectral interferometric technique to measure the ellipsometric phase of a thin-film structure.

A two-step white-light spectral interferometric technique is used to retrieve the ellipsometric phase of a thin-film structure from the spectral interferograms recorded in a polarimetry configuration with a birefringent crystal. In the first step, the phase difference between p- and s-polarized waves propagating in the crystal alone is retrieved. In the second step, the additional phase change ...

متن کامل

Numerical Investigation of Birefringene Effect on the Light Reflection

In the present paper, the problem of light reflection from a birefringent medium and thin film is considered. First, the analytical equations governing the propagation of a plane and harmonic electromagnetic wave in an infinite, birefringent, linear, non-dispersive, non-absorbing, and non-magnetic medium is derived from Maxwell equations. Then, using phase matching condition and boundary condit...

متن کامل

OPTICAL PROPERTIES OF THIN Cu FILMS AS A FUNCTION OF SUBSTRATE TEMPERATURE

Copper films (250 nm) deposited on glass substrates, at different substrate temperatures. Their optical properties were measured by ellipsometery (single wavelength of 589.3 nm) and spectrophotometery in the spectral range of 200–2600 nm. Kramers Kronig method was used for the analysis of the reflectivity curves of Cu films to obtain the optical constants of the films, while ellipsometery measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010